Associative Memory Models with Structured Connectivity
نویسندگان
چکیده
High capacity associative memory models with dilute structured connectivity are trained using naturalistic bitmap patterns. The connectivity of the model is chosen to reflect the local spatial continuity of the data. The results show that the structured connectivity gives the networks a higher effective capacity than equivalent randomly diluted networks. Moreover the locally connected networks have a much lower mean connection length than the randomly connected network.
منابع مشابه
The performance of associative memory models with biologically inspired connectivity
This thesis is concerned with one important question in artificial neural networks, that is, how biologically inspired connectivity of a network affects its associative memory performance. In recent years, research on the mammalian cerebral cortex, which has the main responsibility for the associative memory function in the brains, suggests that the connectivity of this cortical network is far ...
متن کاملThe storage capacity of Potts models for semantic memory retrieval
We introduce and analyse a minimal network model of semantic memory in the human brain. The model is a global associative memory structured as a collection of N local modules, each coding a feature, which can take S possible values, with a global sparseness a (the average fraction of features describing a concept). We show that, under optimal conditions, the number cM of modules connected on av...
متن کاملOptimal connection strategies in one- and two-dimensional associative memory models
This study examines the performance of sparsely-connected associative memory models built using a number of different connection strategies, applied to oneand two-dimensional topologies. Efficient patterns of connectivity are identified which yield high performance at relatively low wiring costs in both topologies. It is found that two-dimensional models are more tolerant of variations in conne...
متن کاملHigh Capacity, Small World Associative Memory Models NEIL DAVEY, LEE CALCRAFT and ROD ADAMS
Models of associative memory usually have full connectivity or if diluted, random symmetric connectivity. In contrast, biological neural systems have predominantly local, non-symmetric connectivity. Here we investigate sparse networks of threshold units, trained with the perceptron learning rule. The units are given position and are arranged in a ring. The connectivity graph varies between bein...
متن کاملEfficient connection strategies in 1D and 2D associative memory models with and without displaced connectivity
This study examines the performance of sparsely connected associative memory models built using a number of different connection strategies, applied to one- and two-dimensional topologies. Efficient patterns of connectivity are identified which yield high performance at relatively low wiring costs in both topologies. Networks with displaced connectivity are seen to perform particularly well. It...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003